The Liesegang phenomenon can be used for micro- and nanofabrication processes to yield materials with periodic precipitation of diverse types of materials. Although there have been several attempts to control the periodicity of the Liesegang patterns, it remains unclear whether the periodic precipitation of AgCl in gel medium causes regular- or revert-type patterns. To confirm the periodicity of the AgCl pattern, we conduct one-dimensional experiments under various ion concentration conditions. From microscopic observations, three different precipitation modes were observed, i.e., continuous precipitation with a sharp front, periodic precipitation and continuous precipitation with a gradual front. For these three modes, numerical analyses of the pattern geometry are performed for the periodic precipitation. It was confirmed that the regular-type pattern appeared for all concentration conditions conducted in the present experiments. Furthermore, the pattern was found to obey the spacing law and the Matalon–Packter law. From our experiments, we concluded that AgCl forms regular-type Liesegang patterns, regardless of the dimension of diffusion.