At traffic hubs, it is important to avoid congestion of pedestrian streams to ensure safety and a good level of service. This presents a challenge, since distributing crowds on different routes is much more difficult than opening valves to, for example, regulate fluid flow. Humans may or may not comply with re-directions suggested to them typically with the help of signage, loudspeakers, apps, or by staff. This remains true, even if they perceive and understand the suggestions. Yet, simulation studies so far have neglected the influence of compliance. In view of this, we complement a state-of-the-art model of crowd motion and crowd behavior, so that we can vary the compliance rate. We consider an abstracted scenario that is inspired by a metro station in the city of Munich, where traffic regulators wish to make some passengers abandon the obviously shortest route so that the flow evens out. We investigate the effect of compliance for two very simple guiding strategies. In the first strategy, we alternate routes. In the second strategy, we recommend the path with the lowest crowd density. We observe that, in both cases, it suffices to reroute a small fraction of the crowd to reduce travel times. But we also find that taking densities into account is much more efficient when facing low compliance rates.