T he global climate risk index (GCI) has ranked Pakistan among the six of ten most climate susceptible countries worldwide for three consecutive years by climate-related catastrophes (Edenhofer et al., 2014). Farming communities rely on their environments for every basic need of life including food security, the impact of climate change, and the onset of extreme weather events are (EWE) devastating. Rain-fed agriculture in Pakistan is highly vulnerable to extreme climate and weather that lead Abstract | Unpredictable and unseasonal extreme climate, prolonged droughts, rise in temperatures, and erratic rainfall are common factors affecting crop productions in rainfed areas worldwide. This research intended to identify spineless Safflower (Carthamus tinctorius L.) performance in acclimating changing climate, as safflower has gained prominence as an oilseed industry due to its hardiness in nature. A two-factor factorial experiment using completely randomized block design (RCBD) followed by five spineless safflower cultivars and five concentrations of salicylic acid (SA) in three replications was conducted. The safflower promising genotypes viz; C1 (L16358), C2 (L16378), C3 (L26748), C4 (L26754), and C5 (L16385) were tested against SA1: 0 mM, SA2: 0.25 mM, SA3: 0.50 mM, SA4: 0.75 mM, and SA5: 1.00 mM salicylic acid concentrations. The result indicated that most responsive cultivar to rainfed conditions was C3 (L26748) under SA4 (0.75 mM) level, showing an increase in head diameter, seed weight, harvest index, oil yield stem, while 7.3-days to flowering maturity were reduced after C5, and C4 (26754). SA3-C5 promoted 8.01 days earlier maturity, maximum seed plant -1 , while SA3-C3 resulted in a significant increase in yield and oil content. SA3 and SA4 showed substantial plasticity to maximum phenology parameters of C3, C4, and C5. Safflower treated with salicylic acid could adapt to wide range even though in the extreme weather and drought conditions in rainfed agriculture. Spineless safflower cultivars could be a future way forward as a potential parallel crop to ensure a sustainable source of production in rainfed regions worldwide.