“…However, low working capacity and dissatisfactory selectivity make them not the best choice for physical sorption separation . Metal–organic frameworks (MOFs) have shown great potential in gas adsorption and separation due to their high surface area, modified pores, adjusted topological structure, and high adsorption capacity, as compared to traditional porous materials like zeolites and activated carbon. − Several classic MOFs, including ZU-801, DUT-52, ZJU, , and DMOF, have exhibited excellent gas storage and separation performance. Researchers have made efforts to enhance gas adsorption and separation properties by functionalizing MOFs through the introduction of functional groups (−CH 3 , −NH 2 , −OH), tuning of pore size and the construction of open metal sites (OMSs). − Previous studies have shown that providing an appropriate aromatic pore environment can enhance interactions between light hydrocarbon molecules and the MOF framework through dispersion and induction forces, a widely used and effective approach. ,− Our research group is committing to the engineering of pores to achieve efficient gas capture. ,,, In our work, we aim to introduce additional functional sites into the aromatic pore environment to achieve a synergistic effect from multiple adsorption sites.…”