Facial recognition work combined with the facial owner's position estimation feature can be utilized in various everyday applications such as face attendance with position detection. Based on this, this study offers a system testing experiment that can be run with facial recognition features and an Indoor Positioning System (IPS) to automatically check the location of the owner of the face. Recently, deep learning algorithms are the most popular method in the world of artificial intelligence. Currently, the Deep Learning algorithm toolbox has provided various programming language platforms. Departing from research findings related to deep learning, this study utilizes this method to perform facial recognition. The system we offer is also capable of checking the position or whereabouts of objects using Indoor Positioning System (IPS) technology. Facial recognition evaluation using CNN obtained a maximum value = 92.89% and an accuracy error value of 7.11%. Meanwhile, the average accuracy obtained is 91.86%. In the evaluation of the estimated position tested using DNN, the highest value of r2 score is 0.934, the lowest is 0.930 and an average is 0.932 and the highest value is MSE is 4.578, the lowest is 4.366 and the average is 4.475. This shows that the facial recognition process that is tested is able to produce good values but not the position estimation process. Keywords: Face Recognition, IPS, CNN, MSE, Accuraccy.