We have designed a new fiber laser configuration with an injection-locked DFB laser applicable for phase-sensitive optical time-domain reflectometry. A low-loss fiber optical ring resonator (FORR) is used as a high finesse filter for the self-injection locking of the DFB (IL-DFB) laser. By varying the FORR fidelity, we have compared the DFB laser locking with FORR operating in the under-coupled, critically coupled, and over-coupled regimes. The critical coupling provides better frequency locking and superior narrowing of the laser linewidth. We have demonstrated that the locked DFB laser generates a single-frequency radiation with a linewidth less than 2.5 kHz if the FORR operates in the critically coupled regime. We have employed new IL-DFB laser configuration operating in the critical coupling regime for detection and localization of the perturbations in phase-sensitive OTDR system. The locked DFB laser with a narrow linewidth provides reliable long-distance monitoring of the perturbations measured through the moving differential processing algorithm. The IL-DFB laser delivers accurate localization of the vibrations with a frequency as low as~50 Hz at a distance of 9270 m providing the same signal-to-noise ratio that is achievable with an expensive ultra-narrow linewidth OEwaves laser (OE4020-155000-PA-00).