Double-strand breaks (DSBs) are particularly deleterious DNA lesions for which cells have developed multiple mechanisms of repair. One major mechanism of DSB repair in mammalian cells is homologous recombination (HR), whereby a homologous donor sequence is used as a template for repair. For this reason, HR repair of DSBs is also being exploited for gene modification in possible therapeutic approaches. HR is sensitive to sequence divergence, such that the cell has developed ways to suppress recombination between diverged ("homeologous") sequences. In this report, we have examined several aspects of HR between homeologous sequences in mouse and human cells. We found that gene conversion tracts are similar for mouse and human cells and are generally <100 bp, even in Msh2 ؊/؊ cells which fail to suppress homeologous recombination. Gene conversion tracts are mostly unidirectional, with no observed mutations. Additionally, no alterations were observed in the donor sequences. While both mouse and human cells suppress homeologous recombination, the suppression is substantially less in the transformed human cells, despite similarities in the gene conversion tracts. BLM-deficient mouse and human cells suppress homeologous recombination to a similar extent as wild-type cells, unlike Sgs1-deficient Saccharomyces cerevisiae.The ability of a cell to repair DNA damage is integral to maintaining genome integrity. One common type of damage that is particularly detrimental is a double-strand break (DSB), where both strands of DNA are broken. If not accurately repaired, DSBs can lead to cell death, chromosomal rearrangements, and loss of genetic material (reviewed in references 14 and 19). One mechanism of DSB repair is homologous recombination (HR), in which an unbroken homologous sequence, the donor of genetic information, is used as a template for repair of the broken sequence, the recipient of genetic information. HR intermediates possess heteroduplex DNA (hDNA), where one strand of DNA is derived from the donor sequence, and the second strand is derived from the recipient sequence. Mismatches in hDNA are substrates of the mismatch repair machinery (MMR) (reviewed in reference 38), leading to gene conversion. HR is the preferred repair pathway of DSBs in Saccharomyces cerevisiae (reviewed in references 42 and 46), plays an important role in repair of DSBs in Drosophila (1, 32), and is a major repair pathway of DSBs that occur during S/G 2 in mammalian cells (33,54).Two pathways appear to predominate for the repair of DSBs by HR, both of which can give rise to noncrossover products, which predominate in mitotic mammalian cells (Fig. 1) (29,52,60). In the DSB repair model proposed by Szostak et al. (61), double Holliday junctions are resolved to result in recombinant products (Fig. 1A). More recent evidence suggests the existence of an alternative pathway, termed synthesis-dependent strand annealing (SDSA) (Fig. 1B) (20,40,42,52). One difference between these two pathways is that the DSB repair model requires capture of both DNA...