This study proposes four kinds of hybrid source–grid–storage systems consisting of photovoltaic and wind energy, and a power grid including different batteries and hydrogen storage systems for Sanjiao town. HOMER-PRO was applied for the optimal design and techno-economic analysis of each case, aiming to explore reproducible energy supply solutions for China’s industrial clusters. The results show that the proposed system is a fully feasible and reliable solution for industry-based towns, like Sanjiao, in their pursuit of carbon neutrality. In addition, the source-side price sensitivity analysis found that the hydrogen storage solution was cost-competitive only when the capital costs on the storage and source sides were reduced by about 70%. However, the hydrogen storage system had the lowest carbon emissions, about 14% lower than the battery ones. It was also found that power generation cost reduction had a more prominent effect on the whole system’s NPC and LCOE reduction. This suggests that policy support needs to continue to push for generation-side innovation and scaling up, while research on different energy storage types should be encouraged to serve the needs of different source–grid–load–storage systems.