N-monomethyl phosphatidylethanolamine (MMPE) and N,N-dimethyl phosphatidylethanolamine (DMPE) species are intermediates of phosphatidylcholine (PC) de novo biosynthesis through methylation of phosphatidylethanolamine (PE). This synthesis pathway for PC is especially important in the liver when choline is deficient in the diet. In spite of some efforts on the analysis of MMPE and DMPE species, cost effective and high throughput method for determination of individual MMPE and DMPE species including their regioisomeric structures is still missing. Therefore, we adopted and improved the “mass-tag” strategy for determining these PE-like species by methylating PE, MMPE, and DMPE molecules with deuterated methyl iodide to generate PC molecules with 9, 6, and 3 deuterium atoms, respectively. Based on the principles of multidimensional mass spectrometry-based shotgun lipidomics, we could directly identify and quantify these methylated PE species including their fatty acyl chains and regiospecific positions. This established method provided remarkable sensitivity with a limit of detection at 0.5 fmol/μl, high specificity, and a broad linear dynamics range of > 2500 folds. By applying this method to the liver samples of streptozotocin (STZ)-induced diabetic mice and their controls, we found that the levels of PC species had the trends to decrease and the amounts of PE species tended to increase in the liver of STZ-induced diabetic mice comparing to their controls, but not significant changes in MMPE and DMPE species were determined. However, remodeling of fatty acyl chains in these determined lipids was observed in the liver of STZ-induced diabetic mice with reduction of 16:1 and increases in 18:2, 18:1, and 18:0 acyl chains. These results demonstrated that the improved method would serve as a powerful tool to reveal the role of the PC de novo biosynthesis pathway through methylation of PE species in biological systems.