Multiphase machines are very convenient for applications that require high reliability. In this two-part survey, the state of the art about fault tolerance in multiphase drives is reviewed. In Part 1, an overview including numerous fault types was presented, along with fundamental notions about multiphase drives. Here, in Part 2, the focus is placed on phase/switch open-circuit (OC) faults in particular, which have received the most attention in the literature. Phase OC failures involve OCs in stator phases or in converter-machine connections, and switch/diode OCs are frequently dealt with similarly or identically. Thanks to the phase redundancy of multiphase drives, their operation can be satisfactorily continued under a certain number of OCs. Nonetheless, the procedure to follow for this purpose is far from unique. For given OC fault conditions, numerous fault-tolerant possibilities can be found in the literature, each of them with different advantages and disadvantages. Moreover, a great variety of methods have also been devised to detect and diagnose phase/switch OC failures so that, as soon as possible, the most appropriate fault-tolerance measures are applied. Thus, given the broad literature about tolerance to phase/switch OC faults in multiphase drives, the survey presented here is expected to be of great interest for the research community and industry.