Incomplete combustion of field crop residues results in the production of char, a material rich in charcoal-type substances. Consequently, char is an effective adsorbent of organic compounds and when incorporated into soil may adsorb soil-applied pesticides, thereby altering their susceptibility to biodegradation. We investigated the relative importance of char, soil pH and initial substrate concentration in biodegradation of pesticides in soils by measuring the biodegradation of benzonitrile in soil as a function of soil char content (0% and 1% by weight), initial benzonitrile concentration (0.1, 1.06, and 10.2 mg l(-1)) and soil pH (5.2, 6.9 and 8.5). Preliminary experiments revealed that wheat straw char had a much greater benzonitrile sorption capacity than did soil to which the char was added. The extent of benzonitrile degradation decreased as initial benzonitrile concentration increased in both buffer solution and soil slurry. In contrast, the degradation increased as initial benzonitrile concentration increased in char-amended slurry. In un-amended soil slurry, the benzonitrile degradation was lower at pH 5.2 than at pH 6.9 or 8.5, but in char-amended soil slurry the degradation was not affected by pH, again presumably due to adsorption of benzonitrile by the char. Adsorption by soil char appears to be more important than either initial substrate concentration or soil pH in controlling benzonitrile degradation in char-amended soil slurry. The presence of crop residue-derived chars may alter pesticide degradation patterns normally observed in soils and thus significantly affect their environmental fate.