This study investigated the adsorptive removal of fluoride from simulated water pollution using various (hydro)oxide nanomaterials, which have the potential to be used as sorbents for surface water and groundwater remediation. Tested nanomaterials include hematite, magnetite, ferrihydrite, goethite, hematite-alpha, hydroxyapatite (HAP), brucite, and four titanium dioxides (TiO 2 -A [anatase], TiO 2 -B [rutile], TiO 2 -C [rutile], and TiO 2 -D [anatase]). Among 11 (hydro)oxide nanomaterials tested in this study, ferrihydrite, HAP, and brucite showed two to five times higher removal of fluoride than other nanomaterials from synthetic fluoride solutions. Freundlich and Redlich-Peterson adsorption isotherms better described the adsorptive capacity and mechanism than the Langmuir isotherm based on higher R 2 values, indicating better fit of the regression predictions. In addition, the adsorption kinetics were well described by the intraparticle diffusion model. Column studies in a fixed bed continuous flow through system were conducted to illustrate the adsorption and desorption behavior of fluoride on ferrihydrite, HAP, or brucite. Experimental results fitted well with the Thomas model because of the R 2 values at least 0.885 or higher. By comparisons of the adsorption capacity and the rate constant, columns packed with ferrihydrite exhibited not only faster rates but also higher sorption capacity than those packed with *