In this contribution, an interpolation problem using radial basis functions is considered. A recently proposed approach for the search of the optimal value of the shape parameter is studied. The approach consists of using global optimization algorithms to minimize the error function obtained using a leave-one-out cross validation (LOOCV) technique, which is commonly used for solving machine learning problems. In this paper, the proposed approach is studied experimentally on classes of randomly generated test problems using the GKLS-generator, which is widely used for testing global optimization algorithms. The experimental study on classes of randomly generated test problems is very important from the practical point of view, since results show the behavior of the algorithms for solving not a single test problem, but the whole class with controllable difficulty, which is the main property of the GKLS-generator. The obtained results are relevant, since the experiments have been carried out on 200 randomized test problems, and show that the algorithms are efficient for solving difficult real-life problems demonstrating a promising behavior.