We have studied the non-collinear interlayer exchange coupling in Fe/Cr(001) superlattices as a function of growth temperature using polarized neutron reflectometry with exit beam polarization analysis. We confirm that the occurrence of non-collinear spin structures is correlated with long-range lateral Cr thickness fluctuations, which, in turn, depend on the growth temperature. We find surprisingly strong coupling between the Fe layers. We explain our data using the recently proposed proximity magnetism model instead of the currently used theory of bilinear and biquadratic exchange coupling.