Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The issues of cybernetic security are considered in the aspect of effective proposals of alternatives to the satellite system in order to be able to promptly reorient to a backup positioning system in case of any technical problems. The assessment of the use of computer-specific competencies in the field of information technologies of the marine fleet as a secondary factor of end-to-end cybernetic security management is given. Information processing in a duplicate analogue of the positioning system is based on the technology of spline functions in order to extract the advantages of piecewise approximation for practical navigation purposes. The functionality of the navigator is analyzed within the framework of the «augmented reality technology» of the bridge of the future with the possibility of observational fixation of the look of the watch officer based on improved virtual professional scenarios against the background of the flow of typical navigation information. In addition to alternatives to the traditional positioning system, the requirements of space all-weather, system noise immunity and round-the-clock use in emergency situations, military conflicts and man-made disasters are formulated. In the circumstances of uncertainty of satellite systems, the problems of their vulnerability are theoretically leveled due to the intended use of navigation equipment based on other physical principles of operation. Correlation-extreme navigation through natural geophysical fields, the innovative e-LORAN project and the means of celestial navigation automated on the basis of computing resources of the onboard computer are highlighted as promising variants of the autonomous positioning principle. The research carried out in this work is combined with the results of experiments within the framework of the magnetic navigation project on the practical implementation of autonomous aviation positioning. Validation of the characteristics of the isotropic field as an informative standard of correlation-extreme navigation is confirmed by practical implementations of various fragments of geophysical fields in the form of three-dimensional visualizations of spline synthesis. The accuracy of geolocation with «terrain-referenced navigation» by extreme indicators is analysed. The forecast of achievability of the predictability effect of a mobile object location in a satellite-based environment is given with optimal motion control using predictive modeling, provided that an accurate assessment of the uncertainty of the navigation system is foreseen. The algorithms tested on the methods of spline functions to ensure authoritative positioning are performed as an intellectual support for the ship’s management staff in an emergency situation.
The issues of cybernetic security are considered in the aspect of effective proposals of alternatives to the satellite system in order to be able to promptly reorient to a backup positioning system in case of any technical problems. The assessment of the use of computer-specific competencies in the field of information technologies of the marine fleet as a secondary factor of end-to-end cybernetic security management is given. Information processing in a duplicate analogue of the positioning system is based on the technology of spline functions in order to extract the advantages of piecewise approximation for practical navigation purposes. The functionality of the navigator is analyzed within the framework of the «augmented reality technology» of the bridge of the future with the possibility of observational fixation of the look of the watch officer based on improved virtual professional scenarios against the background of the flow of typical navigation information. In addition to alternatives to the traditional positioning system, the requirements of space all-weather, system noise immunity and round-the-clock use in emergency situations, military conflicts and man-made disasters are formulated. In the circumstances of uncertainty of satellite systems, the problems of their vulnerability are theoretically leveled due to the intended use of navigation equipment based on other physical principles of operation. Correlation-extreme navigation through natural geophysical fields, the innovative e-LORAN project and the means of celestial navigation automated on the basis of computing resources of the onboard computer are highlighted as promising variants of the autonomous positioning principle. The research carried out in this work is combined with the results of experiments within the framework of the magnetic navigation project on the practical implementation of autonomous aviation positioning. Validation of the characteristics of the isotropic field as an informative standard of correlation-extreme navigation is confirmed by practical implementations of various fragments of geophysical fields in the form of three-dimensional visualizations of spline synthesis. The accuracy of geolocation with «terrain-referenced navigation» by extreme indicators is analysed. The forecast of achievability of the predictability effect of a mobile object location in a satellite-based environment is given with optimal motion control using predictive modeling, provided that an accurate assessment of the uncertainty of the navigation system is foreseen. The algorithms tested on the methods of spline functions to ensure authoritative positioning are performed as an intellectual support for the ship’s management staff in an emergency situation.
An analytical review of the current problems of practical use of the planetary magnetic field as a geophysical basis for navigation is provided in the paper. A hypothesis about the possibility of orientation by an individual signature of a certain geographical area has been put forward and it is based on the fact that the Earth has a measurable magnetic field in any place and at any time, which makes the contours of abnormal magnetic intensity a reliable source of navigation. The results of domestic and foreign studies on the identification of the experimental mean square error of magnetic positioning for determining coordinates with an index of 10 m are analyzed, which in the perspective creates a precedent for supplementing magnetic navigation with the reliable backup global positioning systems. It is noted that navigation by the variable mutability of the magnetic field demonstrates a high-precision positioning potential in GPS-denied environment. As a result, the point of view of the necessity to search for an alternative method is emphasized. The actuality of creating a duplicate system is motivated by the fact that the reliability of global positioning is the subject of attention when studying the issue of cybernetic awareness for the both marine and aviation applications. The innovative approach is considered in a broad aspect, taking into account the possibility of constructing an effective configuration of an artificial neural network to remove the local magnetic field of a ship or aircraft from the measuring data of a magnetometer when using a machine learning algorithm to ensure the reliability of autonomous navigation both in near-Earth space and indoors. A three-dimensional visual representation of a digital model of a simulated magnetic field based on basic finite splines is implemented in two comparative versions: an approximated perspective of magnetic anomalies and its stylized frame model with a mathematical justification of the feasibility of using different methods as optimal standards for mapping the informativeness of magnetic positioning. The planning horizon for the incorporation of spline technology into navigation information processing has been theoretically expanded to a strategy for using a gradient approach in synthesizing the heterogeneous structure of the geophysical field in order to effectively position mobile objects based on realistic consideration of the architecture of multifactor orientation of the gradient vectors spectrum.
The necessity of duplication of satellite navigation by a correlation-extreme navigation system with the actual comparability of indicators of the positioning accuracy of alternative systems is substantiated. When studying the issue of replication of the mapping standard as a basic principle of perspective navigation, the expediency of using the spline approach as an effective additional arsenal of capabilities to the list of reserved interpolating functions of the S-100 universal standard has been revealed. The phenomenon of the application of spline function methods in the framework of the implementation of the concept of modeling the navigation isosurface in order to accurately synthesize the topography of the seabed relief is considered. The theoretical substantiation of using the concept of a spline gradient in the processing of navigation information within the framework of the hypothesis of the gradient fan postulate applicability is carried out. The magnitude and spatial distribution of computational interpolation errors are interpreted into the definition of uncertainty surface, which is a two-dimensional statistical estimation of the accuracy of modeling bathymetric data by analogy with the concept of navigation isosurface. Deterministic interpolation is implemented on the basis of processing an experimental database of measurement data with further transformation into a gridded grid massif. The focus on the use of gridded data in the compilation of digital bathymetric models makes it possible to provide a detailed restoration of the underwater landscape. The interpolation gridding technology has provided a formalized structured representation of a two-dimensional grid of recorded measurements results for visualization of the navigation isosurface in three-dimensional Euclidean space. The hybrid spline algorithm is adapted to reconstruct a detailed profile of an underwater relief with the required morphological properties by mathematically simulating the plasticity of geospatial topography. Based on the technology of spline functions, the three-dimensional perspective of an isolinear bathymetric model investigated by the National Genoese Institute of the water area in the Tyrrhenian Sea is restored. A precedent for the implementation of spline interpolation together with the possibility of visualizing a volumetric perspective on electronic media for the subsequent practical use of three-dimensional electronic maps in order to increase the safety potential of navigation due to the effectiveness of visual orientation of the navigator in difficult sailing circumstances has been created.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.