SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Se
DOI: 10.1109/icsmc.2003.1243872
|View full text |Cite
|
Sign up to set email alerts
|

Stability of multi-agent systems

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
37
0

Publication Types

Select...
5
1
1

Relationship

0
7

Authors

Journals

citations
Cited by 19 publications
(37 citation statements)
references
References 13 publications
0
37
0
Order By: Relevance
“…By using ideas from evolutionary computing, a multiagent system can be seen as a discrete Markov chain and its evolution as a Markov process, possibly with unknown transition probabilities [13]. In a model using this approach, in which the number of agents varies according to the fitness of the individuals, a definition for the degree of instability is proposed based on the entropy of the limit probabilities [34].…”
Section: Related Workmentioning
confidence: 99%
See 2 more Smart Citations
“…By using ideas from evolutionary computing, a multiagent system can be seen as a discrete Markov chain and its evolution as a Markov process, possibly with unknown transition probabilities [13]. In a model using this approach, in which the number of agents varies according to the fitness of the individuals, a definition for the degree of instability is proposed based on the entropy of the limit probabilities [34].…”
Section: Related Workmentioning
confidence: 99%
“…In this case, the system can be considered to be stable if the distribution of states converges to an equilibrium distribution; that is, P ( X n = j ) → π j , when n → ∞ . In other words, the system is stable if the probability distribution of system states becomes independent of the time step n , for large values of n [13]. …”
Section: Interpretations Of Stabilitymentioning
confidence: 99%
See 1 more Smart Citation
“…Whereas Chli-DeWilde stability of MASs [9] may be suitable, because it models MASs as Markov chains, which are an established modelling approach in evolutionary computing [28]. A MAS is viewed as a discrete time Markov chain with potentially unknown transition probabilities, in which the agents are modelled as Markov processes, and is considered to be stable when its state, a stochastic process, has converged to an equilibrium distribution [9].…”
Section: Agent Stabilitymentioning
confidence: 99%
“…Our broader interest lies in understanding the dynamics of ecosystems [1]- [3]. Furthermore, we are interested in analyzing the global system properties which emerge from the interactions that occur in a market ecosystem.…”
Section: Introductionmentioning
confidence: 99%