The activities of the enzymes of the GABA system, glutamate decarboxylase (GAD) and GABA‐transaminase, were measured in discrete regions of the rabbit brain before the onset and during the course of sustained epileptiform seizures induced by the vitamin B6, analogue methoxypyridoxine (MP). GAD activities were measured in a reaction mixture alternatively containing the cofactor pyridoxal‐5′‐phosphate (PLP) in excess or containing no PLP (holoenzyme of GAD). A comparison between these two estimations showed that the apoenzyme of GAD is only partially saturated with cofactor and that the degree of saturation varied from brain area to brain area, being highest in cerebellar cortex and lowest in substantia nigra. Holoenzyme activity fell steeply after administration of 100 mg/kg MP. The regional degree of enzyme inhibition by MP was a function of the saturation of the apoenzyme with cofactor; i.e., a low rate of saturation resulted in a high degree of inhibition, and vice versa. That GAD from the regio inferior of the hippocampus did not fit into the scheme (strong inhibition is present although the degree of saturation is high) is discussed in view of the role of the hippocampus in seizure genesis and generalization. Inhibition of GAD activity by MP was completely reversible in vitro by excess PLP. Before the onset of seizures but not during their course, apoenzyme activity surpassed control levels. This preictal activation is significant in regio inferior of hippocampus, in superior colliculus, and in cerebellar cortex. GABA‐transaminase activities were not significantly altered. The present study demonstrates that only investigation during the preictal period and in regional brain areas can reveal changes specific for the drug and perhaps representing the cause for seizure development, without being masked by additional alterations resulting from the severe functional and metabolic derangement during the ictal events. Thereby, it was disclosed that a decrease in vivo in the level of the enzyme product, GABA, is able to activate GAD.