Abstract:The structural complexities of grain boundaries (GBs) result in their complicated property contributions to polycrystalline metals and alloys. In this study, we propose a GB structure descriptor by linearly combining the average two-point correlation function (PCF) and standard deviation of PCF via a weight parameter, to reveal the standard deviation effect of PCF on energy predictions of Cu, Al and Ni asymmetric tilt GBs (i.e., Σ3, Σ5, Σ9, Σ11, Σ13 and Σ17), using two machine learning (ML) methods; i.e., prin… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.