“…Immunocytochemical studies have shown that the toxin binds to the filaggrin group of proteins in keratohyalin granules,14and because filaggrins act as intracellular anchors of desmosomes, many investigators have speculated that epidermal splitting is a result of rupture of these desmosomes, probably from proteolytic activity of the toxins 15-17. The toxins in their native form, however, do not have any significant proteolytic activity,18
19 and the hypothesis that they may be serine proteases comes from indirect evidence: (1) both toxins show significant sequence homology with the staphylococcal V8 protease, particularly in the region of the serine–aspartic acid–histidine catalytic triad that forms the active site of trypsin-like serine proteases15 ; (2) replacing any of the three amino acids that form the catalytic triad of the toxins results in complete loss of biological activity when injected into newborn mice16
17
19; (3) incubation of ETA with neonatal mouse epidermis18 or neonatal mouse epidermal extract19 results in the induction of caseinolytic activity in the supernatant; and (4) recent computer modelling 20 and crystallographic studies21
22on the three dimensional structure of the toxins have revealed a high degree of structural similarity with known glutamate specific trypsin-like serine proteases. Deletion studies have shown that the highly charged amino terminal of the exfoliative toxins is essential for their activity,22 and recent structural studies have led to speculation that this region may be responsible for binding an epidermal receptor, which in turn may result in a conformational change that exposes the toxin’s active catalytic site 21…”