We present a model-driven approach for the creation of formally verified scenarios involving human-robot interaction in healthcare settings. The work offers an innovative take on the application of formal methods to human modeling, as it incorporates physiology-related aspects. The model, based on the formalism of Hybrid Automata, includes a stochastic component to capture the variability of human behavior, which makes it suitable for Statistical Model Checking. The toolchain is meant to be accessible to a wide range of professional figures. Therefore, we have laid out a user-friendly representation format for the scenario, from which the full formal model is automatically generated and verified through the Uppaal tool. The outcome is an estimation of the probability of success of the mission, based on which the user can refine the model if the result is not satisfactory.