Switching of photocurrent direction in semiconducting systems upon changes of the electrode potential or incident light wavelength was realized by a series of photoelectrodes covered with titania modified with pentacyanoferrate complexes, [Fe(CN)(5)L](n)(-) (L = NH(3), thiodiethanol, thiodipropanol). These materials were characterized by optical spectroscopy and electrochemistry. The structure of the surface complexes was modeled using simple quantum-chemical models. The electrodes described in this paper enable control of the photocurrent direction by two stimuli: Changing the wavelength or the photoelectrode potential easily switches the direction of photocurrent. The materials are different from those of similar characteristics studied by other authors: They are not composites comprising of two types of semiconductors but rather engineered uniform materials. The photocurrent switching phenomenon is an intrinsic feature resulting from a specific electronic structure of the surface-modified semiconductor.