Regulating precipitates is still an important issue in the development of high-strength Mg alloys, due to it determining the precipitation hardening effect. Cold deformation, as a simple and low-cost method, can remarkably influence the precipitate features. It is found that pre-cold deformation before aging can be utilized to enhance the precipitation hardening effect of Mg alloys. Moreover, post-deformation after aging could be an effective method to regulate precipitation orientation. In this review, recent research on the regulation of precipitation behavior by cold deformation in Mg-Al, Mg-Zn, and Mg-RE (RE: rare-earth elements) alloy systems was critically reviewed. The changes in precipitate features and mechanical properties of peak-aged Mg alloys via cold deformation were summarized. The corresponding strengthening mechanisms were also discussed. Finally, further research directions in this field were proposed.