In this article, the melting blend was used to prepare the Micro-ZnO/LDPE, Nano-ZnO/LDPE and Micro-Nano-ZnO/LDPE with different inorganic particles contents. The effect of Micro-ZnO and Nano-ZnO particles doping on interface microdomain and corona-resistance breakdown characteristics of LDPE composite could be explored. Based on the energy transfer and heat exchange theory of energetic electrons, the inner electrons energy transfer model of different ZnO/LDPE composites was built. Besides, the microstructure and crystalline morphology of inorganic ZnO-particles and polymer composites were detected by SEM, XRD, FTIR, PLM and DSC test, and the AC breakdown and corona-resistance breakdown characteristics of composites could be explored. From the experimental results, the Nano-ZnO particles after surface modification dispersed uniformly in LDPE matrix, and the nanoparticles agglomeration almost disappeared. The inorganic particles doping acted as the heterogeneous nucleation agent, which improved the crystallization rate and crystallinity of polymer composites effectively. The ZnO particles with different size doping constituted the different interface structure and crystalline morphology, which made different influence on composites macroscopic properties. When the Nano-ZnO particle size was 40nm and the mass fraction was 3%, the breakdown field strength of Nano-ZnO/LPDE was the highest and 15.8% higher than which of pure LDPE. At the same time, the shape parameter β of Micro-Nano-composite was the largest. It illustrated the microparticles doping reduced the probability of nanoparticles agglomeration in matrix. Besides, both Micro-ZnO and Micro-Nano-ZnO particles doping could improve the ability of corona corrosion resistance of LDPE in varying degrees. The corona-resistant breakdown time order of four samples was as follows: LDPE < Micro-ZnO/LDPE < Nano-ZnO/LDPE < Micro-Nano-ZnO/LDPE. When the mass fraction of Micro-ZnO and Nano-ZnO particles was 2% and 3% respectively, the corrosion depth and area of Micro-Nano-ZnO/LDPE was the least, and the ability of corona corrosion resistance was the strongest.Polymers 2020, 12, 563 2 of 17 of the power system. Therefore, how to improve the long-term dielectric properties of polythene insulation has become urgent to solve [1][2][3][4]. Research showed that the conventional polymer/inorganic Micro-composites possessed excellent thermal conductivity and thermal blocking effect. Besides, the effect of electrical corrosion resistance was obvious. For the nanoparticles doping, it could improve many electrical properties of polymers such as partial discharge resistance, electrical treeing resistance, corona aging resistance and space charge accumulation restraint [5][6][7]. Therefore, a new composite material combining both of these advantages was our aim to find out.On this account, the Micro-Nano-composite technology was used to regulate and control the interface bonding state between the polymer and inorganic Micro-Nano-particles. Then the mesoscopic morphology of composites wa...