Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Using AFM methods in air under normal conditions in a wide range of local force effects ($${F}_{const}$$ F const < 40 μN) the relief, functional micromechanical properties (elasticity coefficient $$K$$ K , Young’s modulus $$E$$ E , elastic $${\Delta h}_{dfrm}$$ Δ h dfrm and plastic $${\Delta h}_{stiff}$$ Δ h stiff deformations) and adhesive properties (work $$A$$ A of adhesive forces $${F}_{adh}={F}_{adh}(x;y)$$ F adh = F adh ( x ; y ) ) of the membranes of living adult cells of human buccal epithelium were studied in the presence of a protective layer < 100 nm of buffer solution that prevented the cells from drying. Almost all geometric and functional characteristics of the membrane in the local approximation at the micro- and nanolevels are affected by size effects and obey the laws of fractal geometry. The Brownian multifractal relief of the membrane is characterized by dimension $${D}_{f}$$ D f < 2.56 and irregularities < 500 nm vertically and < 2 μm horizontally. Its response to elastic (≤ 6 nN), active (6–21 nN), or passive (> 21 nN) stimulation ($${F}_{const}$$ F const ) is a non-trivial selective process and exhibits a correspondingly elastic ($$K=$$ K = 67.4 N/m), active ($$K=$$ K = 80.2 N/m) and passive ($$K=$$ K = 84.5 N/m) responses. $$K=K({F}_{const})$$ K = K ( F const ) and $$E=E({F}_{const})$$ E = E ( F const ) depend on $${F}_{const}$$ F const . Having undergone slight plastic deformations $${\Delta h}_{stiff}$$ Δ h stiff < 300 nm, the membrane is capable of restoring its shape. We mapped ($$E=E(x;y)$$ E = E ( x ; y ) , $${D}_{f}$$ D f = 2.56; $${\Delta h}_{dfrm}={\Delta h}_{dfrm}(x;y)$$ Δ h dfrm = Δ h dfrm ( x ; y ) , $${D}_{f}$$ D f = 2.68; $${\Delta h}_{stiff}={\Delta h}_{stiff}(x;y)$$ Δ h stiff = Δ h stiff ( x ; y ) , $${D}_{f }$$ D f = 2.42, $$A=A\left(x;y\right)$$ A = A x ; y and $${F}_{adh}={F}_{adh}(x;y)$$ F adh = F adh ( x ; y ) ) indicating its complex cavernous structure.
Using AFM methods in air under normal conditions in a wide range of local force effects ($${F}_{const}$$ F const < 40 μN) the relief, functional micromechanical properties (elasticity coefficient $$K$$ K , Young’s modulus $$E$$ E , elastic $${\Delta h}_{dfrm}$$ Δ h dfrm and plastic $${\Delta h}_{stiff}$$ Δ h stiff deformations) and adhesive properties (work $$A$$ A of adhesive forces $${F}_{adh}={F}_{adh}(x;y)$$ F adh = F adh ( x ; y ) ) of the membranes of living adult cells of human buccal epithelium were studied in the presence of a protective layer < 100 nm of buffer solution that prevented the cells from drying. Almost all geometric and functional characteristics of the membrane in the local approximation at the micro- and nanolevels are affected by size effects and obey the laws of fractal geometry. The Brownian multifractal relief of the membrane is characterized by dimension $${D}_{f}$$ D f < 2.56 and irregularities < 500 nm vertically and < 2 μm horizontally. Its response to elastic (≤ 6 nN), active (6–21 nN), or passive (> 21 nN) stimulation ($${F}_{const}$$ F const ) is a non-trivial selective process and exhibits a correspondingly elastic ($$K=$$ K = 67.4 N/m), active ($$K=$$ K = 80.2 N/m) and passive ($$K=$$ K = 84.5 N/m) responses. $$K=K({F}_{const})$$ K = K ( F const ) and $$E=E({F}_{const})$$ E = E ( F const ) depend on $${F}_{const}$$ F const . Having undergone slight plastic deformations $${\Delta h}_{stiff}$$ Δ h stiff < 300 nm, the membrane is capable of restoring its shape. We mapped ($$E=E(x;y)$$ E = E ( x ; y ) , $${D}_{f}$$ D f = 2.56; $${\Delta h}_{dfrm}={\Delta h}_{dfrm}(x;y)$$ Δ h dfrm = Δ h dfrm ( x ; y ) , $${D}_{f}$$ D f = 2.68; $${\Delta h}_{stiff}={\Delta h}_{stiff}(x;y)$$ Δ h stiff = Δ h stiff ( x ; y ) , $${D}_{f }$$ D f = 2.42, $$A=A\left(x;y\right)$$ A = A x ; y and $${F}_{adh}={F}_{adh}(x;y)$$ F adh = F adh ( x ; y ) ) indicating its complex cavernous structure.
Scanning probe microscopy (SPM) is a versatile tool for studying a wide range of materials. It is well suited for investigating living matter, for example, in single-cell neutrophil studies. SPM has been extensively utilized to analyze cell physical properties, providing detailed insights into their structural and functional characteristics at the nanoscale. Its long-standing application in this field highlights its essential role in cell biology and immunology research, significantly contributing to understanding cellular mechanics and interactions. In this review, we discuss the application of SPM techniques, specifically atomic force microscopy (AFM) and scanning ion-conductance microscopy (SICM), to study the fundamental functions of neutrophils. In addition, recent advances in the application of SPM in single-cell immunology are discussed. The application of these techniques allows for obtaining data on the morphology, topography, and mechanical and electrochemical properties of neutrophils with high accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.