Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Complex seismic velocity structure near the earthquake source can affect rupture dynamics and strongly modify the seismic waveforms recorded near the fault. Fault-zone waves are commonly observed in continental crustal settings but are less clear in subduction zones due to the spatial separation between seismic stations and the plate boundary fault. We observed anomalously long duration S waves from earthquake clusters located near the interface of the subducted Gorda plate north of the Mendocino triple junction. In contrast, earthquakes located just a few kilometers below each cluster show impulsive S waves. A nodal array experiment was conducted around the Northern California Seismic Network station KCT for two months to investigate the origin of the complex S waves. Beamforming analysis shows that the S waves contain three arrivals that have different horizontal slownesses, which we term S1, S2, and S coda. Similar analysis on P waves also show two arrivals with different horizontal slownesses, which we term P1 and P2. P1 and S1 have larger horizontal slowness than P2 and S2, respectively, indicating that the phase pairs are body waves with different ray paths. Building upon a seismic refraction profile, we construct 1D velocity models and test different thicknesses and VP/VS ratios for the subducted oceanic crust. The arrival times and relative slownesses of P1/P2 and S1/S2 phases indicate that they are the direct and the Moho reflected phases, respectively. Their properties are consistent with a crustal thickness of ∼6 km and a moderate VP/VS ratio (∼1.8). The S coda is more difficult to characterize but has a clear dominant frequency that likely reflects the near-source velocity and attenuation structure. Our study indicates that waveforms from earthquakes near the interface of the subducted slab can be used to infer detailed structural information about the plate-boundary zone at seismogenic depths.
Complex seismic velocity structure near the earthquake source can affect rupture dynamics and strongly modify the seismic waveforms recorded near the fault. Fault-zone waves are commonly observed in continental crustal settings but are less clear in subduction zones due to the spatial separation between seismic stations and the plate boundary fault. We observed anomalously long duration S waves from earthquake clusters located near the interface of the subducted Gorda plate north of the Mendocino triple junction. In contrast, earthquakes located just a few kilometers below each cluster show impulsive S waves. A nodal array experiment was conducted around the Northern California Seismic Network station KCT for two months to investigate the origin of the complex S waves. Beamforming analysis shows that the S waves contain three arrivals that have different horizontal slownesses, which we term S1, S2, and S coda. Similar analysis on P waves also show two arrivals with different horizontal slownesses, which we term P1 and P2. P1 and S1 have larger horizontal slowness than P2 and S2, respectively, indicating that the phase pairs are body waves with different ray paths. Building upon a seismic refraction profile, we construct 1D velocity models and test different thicknesses and VP/VS ratios for the subducted oceanic crust. The arrival times and relative slownesses of P1/P2 and S1/S2 phases indicate that they are the direct and the Moho reflected phases, respectively. Their properties are consistent with a crustal thickness of ∼6 km and a moderate VP/VS ratio (∼1.8). The S coda is more difficult to characterize but has a clear dominant frequency that likely reflects the near-source velocity and attenuation structure. Our study indicates that waveforms from earthquakes near the interface of the subducted slab can be used to infer detailed structural information about the plate-boundary zone at seismogenic depths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.