In this study, the physico-chemical and rheo-mechanical properties of sage seed gum hydrogel, reinforced by various ratios (0-25 wt.%) of Laponite, were investigated. Particles size measurements indicated the formation of large SSG-Laponite microstructures upon nanoparticle adding, due to the interactions generated between the anionic SSG and the charged surfaces of clay platelets. Laponite affected the surface tension and density of the SSG-based systems significantly, but only influenced the ζ-potential above 20 wt.%. The dynamic rheological behavior of SSG-based nanocomposites reflected the reinforcing effect of secondary structures and percolated three-dimensional network, suggested a structural modification of the hydrogels with the Laponite loading. An improvement in texture profile analysis parameters was observed in Laponite content ≤5 wt.%, whereas for nanoparticles >5 wt.%, a significant decrease was obtained. In conclusion, Laponite improved the rheological and physico-chemical properties of SSG-based hydrogel and extended its potential as promising future bio-products for industrial applications.