Cyclic nucleotide-gated (CNG) and hyperpolarization-activated cyclic nucleotide-regulated (HCN) ion channels play crucial physiological roles in phototransduction, olfaction, and cardiac pace making. These channels are characterized by the presence of a carboxylterminal cyclic nucleotide-binding domain (CNBD) that connects to the channel pore via a C-linker domain. Although cyclic nucleotide binding has been shown to promote CNG and HCN channel opening, the precise mechanism underlying gating remains poorly understood. Here we used cryoEM to determine the structure of the intact LliK CNG channel isolated from Leptospira licerasiae-which shares sequence similarity to eukaryotic CNG and HCN channels-in the presence of a saturating concentration of cAMP. A short S4-S5 linker connects nearby voltage-sensing and pore domains to produce a non-domain-swapped transmembrane architecture, which appears to be a hallmark of this channel family. We also observe major conformational changes of the LliK C-linkers and CNBDs relative to the crystal structures of isolated C-linker/CNBD fragments and the cryoEM structures of related CNG, HCN, and KCNH channels. The conformation of our LliK structure may represent a functional state of this channel family not captured in previous studies.yclic nucleotide-gated (CNG) and hyperpolarization-activated cyclic nucleotide-regulated (HCN) channels are cationpermeable ion channels regulated by the direct binding of cyclic nucleotides (cAMP or cGMP) (1). CNG channels are present in retinal photoreceptors and olfactory sensory neurons, where they perform chemoelectrical energy conversion in response to light or odor stimuli, respectively. Mutations in CNG channels have been associated with numerous inherited retinal degenerative disorders, achromatopsia, and anosmia (2). HCN channels are found in the cardiac sinoatrial node and throughout the nervous system, where they open in response to membrane hyperpolarization and generate a depolarizing current responsible for rhythmic firing (1). HCN channel mutations and mistrafficking have been associated with several disorders, including sinus bradycardia, epilepsy, and autism (3, 4).CNG and HCN channels possess a cyclic nucleotide-binding domain (CNBD) in their carboxyl-terminal region, and binding of cyclic nucleotide produces a large increase in the open probability of the channel pore. Cyclic nucleotide binding to HCN channels also shifts the voltage dependence of activation to more depolarized potentials, increasing the rate and extent of channel opening (5). CNG and HCN channels are part of a family that includes KCNH potassium channels (Fig. 1A and Fig. S1). KCNH channels, however, are distinct in that they possess a cyclic nucleotide-binding homology domain (CNBHD) occupied by an "intrinsic ligand" and are not directly regulated by cyclic nucleotides (6-8).CNG and HCN channels also harbor a C-linker domain situated between the pore and the CNBD. Based on its position, along with mutagenesis and cross-linking studies, this domain is thought t...