Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The USBR VI stilling basin is one of the oldest basins designed to dissipate the energy at the outlet of pipes. In this study, the effect of two parameters including the Froude number (Fr) of inlet flow to the basin and the ratio of basin width to equivalent depth of the inlet flow (W/D) on the characteristics of mean and turbulent flow inside the USBR VI stilling basin were investigated, numerically. Reynolds Averaged Navier–Stokes (RANS) equations were solved with Re-Normalization Group (RNG) k-ε turbulence model. Results showed that by increasing W⁄D, from 3.50 to 9.23, decreasing rate of the average velocity at the end of the basin to the average velocity of the inflow increases from 80 to 97% and decreasing rate of the maximum velocity at the end of the basin to the average velocity of the inflow increases from 40 to 87%. Also, by increasing W⁄D, from 3.50 to 9.23, the average turbulent dissipation rate in the whole basin increases to 4.5 times, moderately. Moreover, by increasing W⁄D, from 3.50 to 9.23, the dissipation of turbulent flow energy in the basin becomes four times. Therefore, to design a USBR VI stilling basin based on the existing conditions, W⁄D recommended to increase as much as possible until nearly 10.
The USBR VI stilling basin is one of the oldest basins designed to dissipate the energy at the outlet of pipes. In this study, the effect of two parameters including the Froude number (Fr) of inlet flow to the basin and the ratio of basin width to equivalent depth of the inlet flow (W/D) on the characteristics of mean and turbulent flow inside the USBR VI stilling basin were investigated, numerically. Reynolds Averaged Navier–Stokes (RANS) equations were solved with Re-Normalization Group (RNG) k-ε turbulence model. Results showed that by increasing W⁄D, from 3.50 to 9.23, decreasing rate of the average velocity at the end of the basin to the average velocity of the inflow increases from 80 to 97% and decreasing rate of the maximum velocity at the end of the basin to the average velocity of the inflow increases from 40 to 87%. Also, by increasing W⁄D, from 3.50 to 9.23, the average turbulent dissipation rate in the whole basin increases to 4.5 times, moderately. Moreover, by increasing W⁄D, from 3.50 to 9.23, the dissipation of turbulent flow energy in the basin becomes four times. Therefore, to design a USBR VI stilling basin based on the existing conditions, W⁄D recommended to increase as much as possible until nearly 10.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.