In view of the current situation where most studies on gas desorption characteristics are limited to the atmospheric pressure desorption environment, we have independently developed a coal methane desorption instrument to test the nonatmospheric pressure desorption characteristics for coal particle gas beneath the condition of desorption damage. The instrument can arbitrarily adjust the gas pressure in the range of measurement while controlling the instantaneous release of excess gas to keep the desorption environment pressure constant. We measured the methane desorption amount of coal samples with different desorption times within 3 h and calculated the desorption velocity. The results show that the final desorption amount and desorption velocity of gas scale up with the increase of times, and the final desorption amount of coal sample W-01 increases the most, which is 18.5%. With the passage of time, the diffusion coefficient decreases gradually, and the number of desorption times is directly proportional to the diffusion coefficient. Its relative deviation of diffusion coefficient between different desorption times of the same coal sample can reach up to 40%, and the desorption time in the range of 5 to 30 min is the area with high relative deviation. A quantitative index K i of a double-parameter damage model based on desorption conditions and adsorption pressure is proposed, and the damage extent of each sample is evaluated. The damage quantitative index of coal sample W-01 is the highest, which is 0.87. The methane desorption model of coal under the condition of desorption damage is constructed, and more than 30 groups of experiments are verified.