SUMMARYPrevious formalisms for determining the static perturbation of spherically symmetric selfgravitating elastic Earth models due to displacement dislocations deal with each infinitesimal element of the fault system in its epicentral reference frame. In this work we overcome this restriction and present novel and compact formulas for obtaining the perturbation due to the whole fault system in an arbitrary and common reference frame. Furthermore, we show that, even in an arbitrary reference frame, it is still possible to discriminate the contributions associated to the polar, bipolar and quadrupolar patterns of the seismic source response, as well as their relation with the along strike, along dip and tensile components of the displacement dislocation. These results allow a better understanding of the relation between the static perturbation and the whole fault system, and find direct applications in geodetic problems, like the modelling of long-wavelength geoid or gravity data from GRACE and GOCE space missions and of the perturbation of the deviatoric inertia tensor of the Earth.