Background
Recently, transcatheter aortic valve replacement (TAVR) has been suggested as a less invasive treatment compared to surgical aortic valve replacement, for patients with severe aortic stenosis. Despite the attention, persisting evidence suggests that several procedural complications are more prevalent with the transcatheter approach. Consequently, a systematic review was undertaken to evaluate the application of three-dimensional (3D) printing in preoperative planning for TAVR, as a means of predicting and subsequently, reducing the incidence of adverse events.
Methods
MEDLINE, Web of Science and Embase were searched to identify studies that utilised patient-specific 3D printed models to predict or mitigate the risk of procedural complications.
Results
13 of 219 papers met the inclusion criteria of this review. The eligible studies have shown that 3D printing has most commonly been used to predict the occurrence and severity of paravalvular regurgitation, with relatively high accuracy. Studies have also explored the usefulness of 3D printed anatomical models in reducing the incidence of coronary artery obstruction, new-onset conduction disturbance and aortic annular rapture.
Conclusion
Patient-specific 3D models can be used in pre-procedural planning for challenging cases, to help deliver personalised treatment. However, the application of 3D printing is not recommended for routine clinical practice, due to practicality issues.