Background. Prolonged metabolic abnormalities have been demonstrated previously in postischemic myocardium, including relative increases in glucose uptake and abnormal fatty acid kinetics. However, quantitative metabolic information is limited, and the time course of changes in MVo2 in postischemic myocardium is unknown. To address these issues, chronically instrumented dogs were studied serially over 1 month after transient left anterior descending coronary artery (LAD) occlusion, using positron emission tomography.Methods and Results. Dynamic imaging protocols were used in conjunction with tracer kinetic models to quantify blood flow and metabolic rates. Myocardial sectors were defined as normal, predominantly reversibly injured, and infarct-containing, based on occlusion blood flow images and postmortem histochemistry. Myocardial blood flow and metabolism were homogeneous at baseline. During LAD occlusion for 3 hours, myocardial blood flow in reversibly injured and infarct-containing sectors (determined with 13NH3) was decreased to 46% and 23%, respectively, of blood flow in normal tissue.