2012
DOI: 10.4028/www.scientific.net/amr.562-564.506
|View full text |Cite
|
Sign up to set email alerts
|

Syntheses and Evaluation of Copolymer 6-Aminohexanoic Acid and 4R-Hydroxy-L-Proline for Bone Repair

Abstract: A novel synthetic copolymer (PAA) for bone repair was prepared by melt condensation polymerization with 6-aminohexanoic acid (He) and 4R-hydroxy-L-proline (Hyp). The structure and thermal property were characterized by infrared spectrometer (IR), nuclear magnetic resonance (H1NMR) and differential scanning calorimeter (DSC). The results indicated that the PAA had amide linkages in their polymer chains. The Tg of PAA was 57.56°C and significantly higher than that of nylon6, 50.46°C. Meanwhile, the intrinsic vis… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2014
2014
2021
2021

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 11 publications
0
2
0
Order By: Relevance
“…MAC had two crystalline peaks at 2θ=19.9° and 2θ=23.5°, which agreed with previous studies. 14,15 The intensity of the two peaks in the MAC microspheres and BSA-loaded microspheres decreased significantly compared to the MAC raw material. The results suggest that crystallinity of the microspheres decreased throughout the double-emulsion solvent extraction process after the formation of microspheres because the solvent evaporated rapidly in a short time, and the copolymer crystallized and had loose structure in the inner water phase.…”
Section: Resultsmentioning
confidence: 99%
“…MAC had two crystalline peaks at 2θ=19.9° and 2θ=23.5°, which agreed with previous studies. 14,15 The intensity of the two peaks in the MAC microspheres and BSA-loaded microspheres decreased significantly compared to the MAC raw material. The results suggest that crystallinity of the microspheres decreased throughout the double-emulsion solvent extraction process after the formation of microspheres because the solvent evaporated rapidly in a short time, and the copolymer crystallized and had loose structure in the inner water phase.…”
Section: Resultsmentioning
confidence: 99%
“…Copolyamino acids based on 6-aminohexanoic acid and protein amino acid structures have been investigated as potential biodegradable polymers [93,94] that can be used for biomedical purposes and as biodegradable packing materials. For example, copolymers of 6-aminohexanoic acid and hydroxyproline have been investigated as potential bone repair materials [95].…”
Section: Polymers and Oligomers Of Ahxmentioning
confidence: 99%