Adsorption and controlled release of agrochemicals has
been studied
widely using different nanomaterials and a variety of formulations.
However, the potential for application of high surface-area metal–organic
frameworks (MOFs) for the controlled release of agrochemicals has
not been thoroughly explored. Herein, we report controlled and sustainable
release of a widely used herbicide (2-methyl-4-chlorophenoxyacetic
acid, MCPA) via incorporation in a range of zirconium-based MOFs and
their biodegradable polymer composites. Three Zr-based MOFs, viz.,
UiO-66, UiO-66-NH
2
, and UiO-67 were loaded with MCPA either
postsynthetically or in situ during synthesis of the MOFs. The MCPA-loaded
MOFs were then incorporated into a biodegradable polycaprolactone
(PCL) composite membrane. All three MOFs and their PCL composites
were thoroughly characterized using FT-IR, TGA, SEM, PXRD, BET, and
mass spectrometry. Release of MCPA from each of these MOFs and their
PCL composites was then studied in both distilled water and in ethanol
for up to 72 h using HPLC. The best performance for MCPA release was
observed for the postsynthetically loaded MOFs, with PS-MCPA@UiO-66-NH
2
showing the highest MCPA concentrations in ethanol and water
of 0.056 and 0.037 mg/mL, respectively. Enhanced release of MCPA was
observed in distilled water when the MOFs were incorporated in PCL.
The concentrations of herbicides in the release studies provide us
with a range of inhibitory concentrations that can be utilized depending
on the crop, making this class of composite materials a promising
new route for future agricultural applications.