Volatiles emitted by plants in response to feeding by Lygus species were tested in neurophysiological, behavioral, and parasitism trials with Anaphes iole, an egg parasitoid of Lygus. Electroantennogram analyses indicated that A. iole antennae responded to most herbivore-induced plant volatiles (HIPVs) tested and that females were usually more responsive than males. Antennal responses to (Z)-3-hexenyl acetate and methyl salicylate were among the strongest. Behavioral assays in a four-arm olfactometer demonstrated that response of female wasps to (Z)-3-hexenyl acetate varied greatly depending on preconditioning regime. Preconditioning wasps to complex host-plant odors led to stronger preference than did a single preconditioning stimulus, i.e., (Z)-3-hexenyl acetate. In a horizontal wind tunnel, female wasps were attracted by methyl salicylate and α-farnesene. Parasitism of Lygus lineolaris eggs by A. iole in a cotton field was greater when the eggs were associated with (Z)-3-hexenyl acetate or α-farnesene than with controls. Overall, the results of this study show that A. iole can perceive a variety of plant volatiles released after its host damages plants, that the degree of associative learning in A. iole can be manipulated based on preconditioning regime, and that single synthetic HIPVs are attractive to A. iole and can be used to increase attack rates on host eggs. Therefore, it appears that HIPVs have potential for use in suppression of Lygus population densities.