With the increasing connectivity of modern vehicles, protecting systems from attacks on cyber is becoming crucial and urgent. Meanwhile, a vehicle should guarantee a safe and comfortable trip for users. Therefore, how to design a cybersecurity-critical system in vehicles with safety and user experience (UX) considerations is increasingly essential. However, most co-design methods focus on safety engineering with attack concerns and do not discuss conflicts and integration, and few contain the UX aspect. Besides, most existing approaches are abstract at a high level without practical guidelines. This paper presents a literature review of existing safety and security design approaches and proposes a systematic approach for cybersecurity design of in-vehicle network systems based on the guideline in SAE J3061. The trade-off analysis is performed by using association keys and the proposed affecting map. The design process of an example Diagnostic on Internet Protocol (DoIP) system is reported to show how the approach works. Compared with the existing approaches, the proposed one considers safety, cybersecurity, and UX simultaneously, solves conflicts qualitatively or quantitatively, and obtains trade-off design requirements. This approach is applicable to the cybersecurity-driven design of in-vehicle network systems in the early stage with safety and UX considerations.