The field of organic
photovoltaics has developed rapidly over the
last 2 decades, and small solar cells with power conversion efficiencies
of 13% have been demonstrated. Light absorbed in the organic layers
forms tightly bound excitons that are split into free electrons and
holes using heterojunctions of electron donor and acceptor materials,
which are then extracted at electrodes to give useful electrical power.
This review gives a concise description of the fundamental processes
in photovoltaic devices, with the main emphasis on the characterization
of energy transfer and its role in dictating device architecture,
including multilayer planar heterojunctions, and on the factors that
impact free carrier generation from dissociated excitons. We briefly
discuss harvesting of triplet excitons, which now attracts substantial
interest when used in conjunction with singlet fission. Finally, we
introduce the techniques used by researchers for characterization
and engineering of bulk heterojunctions to realize large photocurrents,
and examine the formed morphology in three prototypical blends.