Science is a social organization: independent collaboration groups work to generate knowledge as a public good. The credibility of the scientific work is entrenched in the evidence that supports it, which includes the applied methodology, the acquired data, the processes to execute the experiments, the data analysis, and the interpretation of the obtained results. The flood of data under which current science is embedded revolutionizes the way surveys are conducted, resulting in a new paradigm of data-driven science. Under such a paradigm, new activities are inserted into the scientific method to organize the process of generation, curation, and publication of data, benefiting the scientific community with the reuse and reproducibility of scientific datasets. In this context, new approaches to problem solving are being presented, obtaining results that previously were considered of relevant difficulty, as well as making possible the generation of new knowledge. Several portals are providing datasets resulting from scientific research. However, such portals do little to address the context upon which datasets are created, making it difficult to understand the data and opening up space for misuse or misinterpretation. In the Big Data area, the dimension that proposes to deal with this aspect is called Veracity. Few studies in the literature approach such a theme, focusing on other dimensions, such as volume, variety, and velocity of data. This research aimed to define a model of collaborative assessment of scientific datasets, through the establishment of an application profile, which standardizes the description of scientific datasets. This standardization of the description is based on the veracity dimension concept, which is defined throughout the research and allows the development of metrics that form the Veracity Index of scientific datasets. This index seeks to reflect the level of detail of a dataset based on the use of the descriptive elements, which will facilitate the reuse and reproducibility of the data. The index is weighted by the evaluation of the scientific community in a collaborative sense, which assess the level of description, comprehension capacity, and suitability of the dataset for a given research or application area. For the proposed collaborative evaluation model, a case study was developed that described a dataset from an international scientific project, the GoAmazon project, in order to validate the proposed model among the peers, demonstrating the potential of the solution in the reuse and reproducibility of datasets, showing that such an index can be incorporated into scientific data portals.