Reusing test cases across apps that share similar functionalities reduces both the effort required to produce useful test cases and the time to offer reliable apps to the market. The main approaches to reuse test cases across apps combine different semantic matching and test generation algorithms to migrate test cases across apps. In this paper we define a general framework to evaluate the impact and effectiveness of different choices of semantic matching with approaches on migrating test cases across apps. We offer a thorough comparative evaluation of the many possible choices for the components of test migration processes. We propose an approach that combines the most effective choices for each component of the test migration process to obtain an effective approach. We report the results of an experimental evaluation on 8,099 GUI events from 337 test configurations. The results attest the prominent impact of semantic matching on test reuse. They indicate that sentence level perform better than word level embedding techniques. They surprisingly suggest a negligible impact of the corpus of documents used for building the word embedding model for the . They provide evidence that semantic matching of events of selected types perform better than semantic matching of events of all types. They show that the effectiveness of overall approach depends on the characteristics of the test suites and apps. The replication package that we make publicly available online (https://star.inf.usi.ch/#/software-data/11) allows researchers and practitioners to refine the results with additional experiments and evaluate other choices for test reuse components.