The present study was conducted to investigate the protective role of Omega-3 polyunsaturated fatty acids against lead acetate-induced toxicity in liver and kidney of female rats. Animals were divided into four equal groups; group 1 served as control while groups 2 and 3 were treated orally with Omega-3 fatty acids at doses of 125 and 260 mg/kg body weight, respectively, for 10 days. These groups were also injected with lead acetate (25 mg/kg body weight) during the last 5 days. Group 4 was treated only with lead acetate for 5 days and served as positive control group. Lead acetate increased oxidative stress through an elevation in MDA associated with depletion in antioxidant enzymes activities in the tissues. Moreover, the elevation of serum enzymes activities (ALT, AST, ALP, and LDH) and the levels of urea and creatinine were estimated but total proteins were decreased. Also, lead acetate-treatment induced hyperlipidemia via increasing of lipid profiles associated with decline in HDL-c level. Significant changes of Hb, PCV, RBCs, PLT, and WBCs in group 4 were recorded. The biochemical alterations of lead acetate were confirmed by histopathological changes and DNA damage. The administration of Omega-3 provided significant protection against lead acetate toxicity.