Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This paper reviews the present state of knowledge concerning the diurnal and semidiurnal variations in the galactic cosmic ray intensity. The analytical procedures that are required for extracting from the original data the desired information concerning the characteristics of the anisotropies outside the magnetosphere are described. These include corrections for atmospheric fluctuations, the determination of the amplitudes and phases of the daily variations, and their interpretation in terms of the free space anisotropies that give rise to them. The experimental results concerning the 24-h wave, including its long-term variations with periods of one and two solar cycles, and the characteristics of the total dmrnal anisotropy are then discussed. The semidmrnal amsotropy is considered next. Transient anisotropies which manifest themselves as day-to-day variations, recurrence tendencies, cosmic ray storms, and diurnal variation trains, and which can introduce appreciable changes in the spectral parameters, are also of interest. The evolution of theoretical models developed to account for the diurnal and semidiurnal anisotropies, and fluctuations thereof, are then discussed in the light of the experimental results. Finally, the general features that are now well established, and the nature of the remaining problems, are summarized.
This paper reviews the present state of knowledge concerning the diurnal and semidiurnal variations in the galactic cosmic ray intensity. The analytical procedures that are required for extracting from the original data the desired information concerning the characteristics of the anisotropies outside the magnetosphere are described. These include corrections for atmospheric fluctuations, the determination of the amplitudes and phases of the daily variations, and their interpretation in terms of the free space anisotropies that give rise to them. The experimental results concerning the 24-h wave, including its long-term variations with periods of one and two solar cycles, and the characteristics of the total dmrnal anisotropy are then discussed. The semidmrnal amsotropy is considered next. Transient anisotropies which manifest themselves as day-to-day variations, recurrence tendencies, cosmic ray storms, and diurnal variation trains, and which can introduce appreciable changes in the spectral parameters, are also of interest. The evolution of theoretical models developed to account for the diurnal and semidiurnal anisotropies, and fluctuations thereof, are then discussed in the light of the experimental results. Finally, the general features that are now well established, and the nature of the remaining problems, are summarized.
In this review an attempt is made to present an integrated view of the solar modulation process that cause time variation of cosmic ray particles. After briefly surveying the relevant large and small scale properties of the interplanetary magnetic fields and plasma, the motion of cosmic ray particles in the disordered interplanetary magnetic fields is discussed. The experimentally observed long term variations of different species of cosmic ray particles are summarised and compared with the theoretical predictions from the diffusion-convection model. The effect of the energy losses due to decelaration in the expanding solar wind are clearly brought out. The radial density gradient, the modulation parameter and their long term variation are discussed to understand the dynamics of the modulating region. The cosmic ray anisotropy measurements at different energies are summarised. At high energies (E> 1 GeV), the average diurnal anisotropy is shown to be energy independent and along the 18.00 h direction consistent with their undergoing partial corotation with the sun. The average semi-diurnal anisotropy seems to vary with energy as E +1 and incident from a direction perpendicular to the interplanetary field line, consistent with the semi-diurnal component being produced by latitudinal gradients. Both the diurnal and semi-diurnal components are shown to be practically time invariant. On a day to day basis, however, the anisotropy characteristics such as the exponent of variation, the amplitude and the phase show very high variability which are interpreted in terms of convection and variable field aligned diffusion due to the redistribution of the galactic cosmic ray density following transient changes in the interplanetary medium. The anisotropy observation at low energies (E< 100 MeV) are, however, not explained by the theory.The rigidity dependence and the anisotropies during short term variations such as Forbush decreases are discussed in terms of the proposed field models for the interplanetary field structure and are compared with the observed rigidity dependence of long term variations. The data pertaining to the 27 day corotating Forbush decreases and their association with enhanced diurnal variation are also presented. The relationship between the energetic storm particle events which are caused by the acceleration of particles in the shock fronts and the Forbush decreases which are caused by the exclusion of galactic particles by the enhanced field structure in the same fronts are clearly brought out. Thus the recurrent increases at low energies and recurrent decreases at high energies may both be caused by the field structure in the shock front. In conclusion, the properties of the very short period fluctuations (18-25 cph) are summarised.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.