Dietary stress such as obesity and short-term changes in energy balance can disrupt ovarian function leading to infertility. Adipose tissue secretes hormones (adipokines), such as leptin and adiponectin, that are known to alter ovarian function. Muscles can also secrete endocrine factors, and one such family of myokines, the eleven Fibronectin type III Domain-Containing (FNDC) proteins, is emerging as important for energy sensing and homeostasis. In this review we summarize the known roles the FNDC proteins play in energy homeostasis and explore potential impacts on fertility in females. The most well-known member, FNDC5, is the precursor of the 'exercise hormone', irisin, secreted by both muscle and adipose tissue. The receptors for irisin are integrins, and it has recently been shown to alter steroidogenesis in ovarian granulosa cells although the effects appear to be species or context specific, and irisin may improve uterine and placental function in women and rodent models. Another member, FNDC4, is also cleaved to release a bioactive protein that modulates insulin sensitivity in peripheral tissues and whose receptor, ADGRF5, is expressed in the ovary. As obese women and farm animals in negative energy balance (NEB) both have altered insulin sensitivity, secreted FNDC4 may impact ovarian function. We propose a model in which NEB or dietary imbalance alters plasma irisin and secreted FNDC4 concentrations, which then act on the ovary through their cognate receptors to reduce granulosa cell proliferation and follicle health. Research into these molecules will increase our understanding of energy sensing and fertility, and may lead to new approaches to alleviate post-partum infertility