Photocatalysis, mainly using TiO2 as a catalyst, has emerged as a promising method to address the issue of wastewater treatment. This study explores the enhanced photocatalytic activity of TiO2 through the introduction of reduced graphene oxide (rGO) and cadmium sulfide (CdS) as selective metal dopants. The incorporation of rGO and CdS into the TiO2 lattice aims to optimize its photocatalytic properties, including bandgap engineering, charge carrier separation, and surface reactivity. The unique combination of CdS and rGO with TiO2 is expected to boost degradation efficiency and reduce the reliance on expensive and potentially harmful sensitizers. This experimental investigation involves the synthesis and characterization of TiO2-based photocatalysts. The photocatalytic degradation of methyl orange (MO) and methylene blue (MB) was assessed under controlled laboratory conditions, studying the influence of metal dopants on degradation kinetics and degradation efficiency. Furthermore, the synthesized photocatalyst is characterized by advanced techniques, including BET, SEM, TEM, XRD, and XPS analyses. The degraded samples were analyzed by UV-Vis spectroscopy. Insights into the photoexcitation and charge transfer processes shed light on the role of metal dopants in enhancing photocatalytic performance. The results demonstrate the potential of a TiO2-rGO-CdS-based photocatalyst in which 100% degradation was achieved within four hours for MO and six hours for MB, confirming efficient azo dye degradation. The findings contribute to understanding the fundamental principles underlying the photocatalytic process and provide valuable guidance for designing and optimizing advanced photocatalytic systems. Ultimately, this research contributes to the development of sustainable and effective technologies for removing azo dyes from various wastewaters, promoting environmental preservation and human well-being.