High surface area graphite (HSAG) was tested as a support of ruthenium catalyst for ammonia synthesis. As it is in the form of fine powder, it can be dispersed in the ruthenium precursor solution achieving high dispersion of Ru and efficiency. The surface area, porosity, crystalline structure of support, morphology, dispersion of Ru, desorption of H 2 and N 2 and methanation of the catalyst were investigated by N 2 physisorption, XRD, SEM, TEM and TPD/TPSR techniques. The results show that higher ammonia synthesis rates of the HASG catalyst compared to activated carbon can be achieved with the assistance of ultrasonic treatment. As expected, the methanation rate over HSAG is much lower than that of activated carbon over the whole temperature range studied.