Abstract.A popular formalism of higher order rewriting, especially in the light of termination research, are the Algebraic Functional Systems (AFSs) defined by Jouannaud and Okada. However, the formalism is very permissive, which makes it hard to obtain results; consequently, techniques are often restricted to a subclass. In this paper we study termination-preserving transformations to make AFS-programs adhere to a number of standard properties. This makes it significantly easier to obtain general termination results.