We use the GEOS-Chem chemical transport model to examine the influence of bromine release from blowing snow sea salt aerosol (SSA) on springtime bromine activation and O3 depletion events (ODEs) in the Arctic lower troposphere. We 15 evaluate our simulation against observations of tropospheric BrO vertical column densities (VCDtropo) from the GOME-2 and OMI spaceborne instruments for three years (2007)(2008)(2009), as well as against surface observations of O3. We conduct a simulation with blowing snow SSA emissions from first-year sea ice (FYI, with a surface snow salinity of 0.1 psu) and multiyear sea ice (MYI, with a surface snow salinity of 0.05 psu), assuming a factor of 5 bromide enrichment of surface snow relative to seawater. This simulation captures the magnitude of observed March-April GOME-2 and OMI VCDtropo to within 20 17%, as well as their spatiotemporal variability (r=0.76-0.85). Many of the large-scale bromine explosions are successfully reproduced, with the exception of events in May, which are absent or systematically underpredicted in the model. If we assume a lower salinity on MYI (0.01 psu) some of the bromine explosions events observed over MYI are not captured, suggesting that blowing snow over MYI is an important source of bromine activation. We find that the modeled atmospheric deposition onto snow-covered sea ice becomes highly enriched in bromide, increasing from enrichment factors of ~5 in September-25 February to 10-60 in May, consistent with freshly fallen snow composition observations. We propose that this progressive enrichment in deposition could enable blowing snow-induced halogen activation to propagate into May and might explain our late-spring underestimate in VCDtropo. We estimate that atmospheric deposition of SSA could increase snow salinity by up to 0.04 psu between February and April, which could be an important source of salinity for surface snow on MYI as well as FYI covered by deep snowpack. Inclusion of halogen release from blowing snow SSA in our simulations decreases monthly mean 30 Arctic surface O3 by 4-8 ppbv(15-30%) in March and 8-14 ppbv (30-40%) in April. We reproduce a transport event of depleted O3 Arctic air down to 40Âș N observed at many sub-Arctic surface sites in early April 2007. While our simulation captures a few ODEs observed at coastal Arctic surface sites, it underestimates the magnitude of other events and entirely misses some events. We suggest that inclusion of direct snowpack activation, which is a strong local source of Br radicals in the shallow Arctic boundary layer, could help reconcile the success of our simulation at capturing satellite retrievals of VCDtropo with its 35 difficulty in reproducing local ODEs.In the global troposphere, inorganic bromine (Bry) has three major sources: debromination of sea salt aerosol (SSA) produced by breaking waves in the open ocean, photolysis and oxidation of bromocarbons, and transport of Bry from the stratosphere.Release of Br â from oceanic SSA is estimated to be the largest global source of troposphe...