This paper investigates the effects of support friction on mixed-mode I/II fracture behavior of compacted clay using notched deep beam (NDB) specimens under symmetric fixed support. Numerical models of 330 NDB specimens were established considering the crack inclination angle, crack length, support span, and support friction coefficient, and the normalized fracture parameters (YI, YII, and T*) of NDB specimens were calibrated. The numerical results showed that the values of YI, YII, and T* decreased at different degrees after considering the support friction. Notably, the support friction coefficient could significantly change the loading pattern at the crack tip. To verify this phenomenon, 12 compacted clay NDB specimens were prepared, and a mixed-mode I/II fracture test was performed under fixed support conditions; the phenomenon of asymmetric crack propagation was studied. The test data were processed using the numerical calibration results of YI, YII, and T* with and without consideration of friction. Afterward, the test data were compared and analyzed by combining the generalized maximum tangential stress (GMTS) and the maximum tangential stress (MTS) criteria. The analysis indicated that the real fracture characteristics of compacted clay NDB specimens could not be reflected when conducting mixed-mode I/II fracture tests under symmetric fixed support conditions if the test results were analyzed by YI, YII, and T* without considering support friction, as in previous studies.