We define 2-decompositions of ribbon graphs, which generalize 2-sums and tensor products of graphs. We give formulae for the Bollobás-Riordan polynomial of such a 2-decomposition, and derive the classical Brylawski formula for the Tutte polynomial of a tensor product as a (very) special case. This study was initially motivated from knot theory, and we include an application of our formulae to mutation in knot diagrams.