Using primary rat mesencephalic neuron-glia cultures as an in vitro model of Parkinson's disease (PD), we tested the effect of curcumin, a natural dietary pigment with well-known anti-inflammation effects, on dopaminergic (DA) degeneration. Curcumin pretreatment mitigated LPS-induced DA neurotoxicity in a concentration-dependent manner and curcumin post-treatment also showed protective effect. Microglia depletion abolished this protective effect of curcumin, indicating that microglia play an important role in this effect. Supportively, observation by immunocytochemistry staining using OX-42 antibody showed that curcumin treatment inhibited LPS-induced morphological change of microglia. Besides, LPS-induced production of many proinflammatory factors and their gene expressions decreased dramatically after curcumin treatment. Results also revealed that curcumin treatment decreased LPS-induced activation of two transcription factors--nuclear factors kappaB (NF-kappaB) and activator protein-1 (AP-1). Taken together, our study implicated that curcumin might be a potential preventive and therapeutic strategy for inflammation-related neurodegenerative diseases.