In the last few years, X-ray observational studies of young star clusters have advanced significantly, mainly thanks to the great capabilities of current X-ray observatories such as Chandra and XMM/Newton. In addition to enabling a detailed study of coronae of individual bright stars, high-spatial-resolution X-ray observations of many young clusters and star-forming regions, even massive and distant ones, have led to the detection of large populations of X-ray-bright members, often down to subsolar masses, and despite strong absorption. The peculiar ability of X-ray emission to select young, low-mass cluster stars against a crowded Galactic-plane field-star background has permitted better studies of global cluster properties, with respect to optical/infrared studies alone, including of cluster initial mass functions (across wide mass ranges), star-formation histories (with indication of age spreads-or even sequencesin many clusters) and morphologies (various degrees of symmetry and dynamical relaxation), sometimes with evidence of mass segregation. Also, the complementary availability of X-ray and optical/infrared data has enabled to place constraints on lifetimes and depletion mechanisms of pre-main-sequence circumstellar disks.